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FDTD Analysis of Magnetized
Ferrites: A More Efficient Algorithm

Michal Okoniewski, Member, IEEE, and Ewa Okoniewska

Abstract— A more efficient FDTD algorithm is introduced
for the analysis of structures involving magnetized ferrites. A
critical issue of time and space synchronism ensuring second
order accuracy is discussed, and a method to provide it based on
extrapolation rather than interpolation used by previous authors
is presented. Numerical examples validating the method are
given.

1. INTRODUCTION

ECENTLY, the versatility of FDTD has been further

enhanced with the introduction of algorithms capable
of solving electromagnetic problems that involve magnetized
ferrites. Two distinct approaches have been reported.

In the first one, the relations describing fer-
rite—electromagnetic field interactions derived in the
frequency domain—are exploited. Magnetic flux B is related
to a magnetic strength vector H via a frequency dependent
tensor of Polder ﬁ This relation, transformed to the time
domain by means of the convolution theorem, is introduced
into the Maxwell’s equation system. Subsequent discretization
yields the FDTD scheme. A successful implementation of
this concept was described in details by Kunz ef al. in their
book [1], where issues of transforming convolutions into an
efficient recursive technique and decoupling of the difference
equations were also addressed.

The other approach goes back into the physics of ferrites.
Maxwell’s equations are supplemented with the Gilbert’s
equation of motion, which describes, in the time domain,
the interactions between magnetic strength and magnetization
vectors in magnetized ferrites. In the context of FDTD this
idea was first reported by [2], [3]. As in the convolution
approach, the discretization process is complicated by the
existence of magnetized ferrites, and care must be taken to
maintain second-order accuracy of central difference scheme.
A properly synchronized in space and in time ferrite FDTD
method was introduced by Pereda [4] and almost simultane-
ously in [5], [6]. Pereda and his co-workers later utilized the
Rotated Richtmyer scheme [7] in their FDTD method, which
allowed them to avoid spatial interpolation of vector B, but at
the expense of interpolation of vector E.

In this letter, a further enhancement to ferrite FDTD tech-
niques is introduced in which maintenance of the proper time
synchronism within the entire FDTD scheme is simplified.
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II. FORMULATION

In the magnetized, saturated ferrite media, the electro-
magnetic wave is governed by the following set of partial
differential equations:
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where: v is a gyromagnetic ratio, M=M,+mw, H =ﬁz~+fz. Vec-
tors ]\Z[s, I:7i denote saturation magnetization and static biasing
magnetic field, respectively, while 7, and F are time varying
magnetization and magnetlc strength vectors, respectively.

_ Assuming that M, > m and H; > k, and knowing that
B= uo(H +M ), the following PDE system is obtained:
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This system of equation needs to be discretized in order
to derive an FDTD algorithm. As in the standard Yee’s
method, central differencing is applied to obtain an explicit,
leap-frog scheme. Since the field components in the plane
perpendicular to the biasing magnetization are coupled, care
must be exercised in the discretization process in order to
maintain the second order accuracy of the central difference
scheme, i.e. a proper synchronization of the algorithm in space
and in time has to be ensured. This issue will be addressed
in the next section.

A. Synchronization in Space

To illustrate the synchronization problem the left sides of
4), (5) are discretized first:
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where: n denotes the number of time steps elapsed since the
beginning of the simulation.

Provided all the components are available in the specified
moments of time, the above finite difference approximation
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introduces errors of order o[(At) |- To meet the specified time
constraints, time derivative of m has to be computed using
A" (for the sake of clarity, it is assumed for the rest of this
section that H; = 0 and M = M,d,):

d " 5 o

{%m} = —yM; x A" C)
Unfortunately, ™ is not available. In [2], and also recently
m [8], this fact was ignored and it was simply assumed that
h™ = E"=1/2_ This allowed for a simple derivation of ferrite

algorithm, but assured o[At/2] accuracy only.
A more accurate solution is obtained if interpolation is used
to fulfill time crlterlon in (9). It can be observed, that though

™ is not available, 2"~1/2 is already known, and A"+1/2 i
about to be determined. Simple linear interpolation yields:

d\"
dt o

If this approximation is introduced into (8), a following pair
of equations is obtained:

—-;- (M % Fr=1/2 4 N, x En+1/2) (10)
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where: s = AtjzM

Note, that these equations are coupled, therefore they need
to be solved for h"+1/ % and K2 /2 prior to the derivation of
FDTD update formulae. Pereda, in [4], [7], successfully used
an approach very similar to the one described above.

The numerical overhead associated with the decoupling in
the formulation presented above can be avoided if extrapola-
tion rather than interpolation is used as follows:

o d-Y""1 1,4 o
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which leads to the following approximation of the time deriva-
tive of

d n_ 2Ry, Pn—1/2 _ 7n—3/2
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Using this approximation, the following relations can be
derived:
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Unlike (11), (12), the above equations are not coupled and
can readily be used to derive FDTD update formulae. Although
much simpler, they provide second-order accuracy in time.

If H; # 0 is allowed, it is not possible to directly compute
h fields. Instead, magnetization has to be computed first, and
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Fig. 1. Interpolation and extrapolation schemes in a Yee mesh modified for

ferrite media.

then its time derivative must be used to update 5 fields in (8),
as shown below:
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B. Space Synchronism

As it is the case with time, space synchronism ensuring
second-order accuracy is not automatically provided by the
central differencing applied to the right hand side of (18), (19).
This directly results from the coupling between magnetic fields
perpendicular to the biasing magnetization and the organi-
zation of the modified Yee cell. For instance, magnetization
component my, though required at the location of h,, is
actually evaluated at the location of h, field component, due
to the localized (in space) nature of the equation of motion
(compare (16)). To alleviate this problem, interpolation is used
(see Fig. 1), in a similar manner as in [4]. For example, in the
case of 2D mesh of compact FDTD:

Lmaliz — 1iy) + mo(iz,iy)]  (20)
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where: standard FDTD notation is used to describe the loca-
tion of vectors in space, and subscript ¢ denotes interpolated
values.

This interpolation scheme breaks down at the metal-ferrite
interface. Extrapolation can be used instead, yielding, for
instance z2=0:

Mg (12,1y) =

mai(l,1y)) 2D

The interpolated values m,; should be used in (18), (19)
in place of m,.

M (0,1y) = 2m,(0,4y) —
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TABLE 1
PHASE CONSTANTS OF FUNDAMENTAL MODE OF RECTANGULAR WAVEGUIDE
FULFILLED WITH MAGNETIZED FERRITE. WAVEGUIDE: 22.86 x 10.16mm,
FERRITE: M, =2000Gs, H;=0.1*M,, ,=9; MESH: Az=a/10

Blrad/m] 83.27 151.5 200.9 2543 '300.3 361.3 398.7 468.3 501.2

F[GHz] © 6.630 6.911 7.207 7.604 8.003 8601 9.001 '9.799 10.20

errors [%)]

FDTD[4] -0.69 -0.62 -0.55 -0.49 . 42.05 +2.04 +4.26 +4.04 +3.94

FDTD this :0.16 : -1.85 -1.16 -042 +0.15 +0.36 +0.44 40.69 +0.89
TABLE 11

PHASE CONSTANTS OF FUNDAMENTAL MODE OF RECTANGULAR WAVEGUIDE
PARTIALLY FILLED WITH MAGNETIZED FERRITE. WAVEGUIDE: 22.86 x 10.16mm,
(FERRITE SLAB ADJACENT TO THE LATERAL WALL OF THE WAVEGUIDE):
WIDTH a/3, M,=2000Gs, H;=0.1*Mj, €,=9; MESH: Az=a/100

Blrad/m] -500  -300 200 -100 0 100 200 300 500
exact F[GHz] =~ 10.57 7.669 6.696 . 6,618 6.828 7.376 '8.188 9.128 11.32
FDTD error  +0.10. 4039 +0.48 40.65 +0.73 +0.26 - -0.55 -0.49 -0.13

TABLE III
RESONANCE FREQUENCY OF A FUNDAMENTAL MODE IN A RECTANGULAR
RESONATOR L.OADED WITH CYLINDRICAL MAGNETIZED ROD. RESONATOR:
22.86 x 10.16 x 28.85mm. FERRITE RoDS: FOoR $=2 and 3mm —
er=13, M:=1750Gs, H;=0; for &=4mm — €;=13.5, M,=950, H;=0

Rod & [mm)] 2 3 4
MM[9] 8.134 7.895 7.453
FDTD 8.136 7.906 7.435

measured [9] 8.118 7.851 7.442

III. NUMERICAL EXAMPLES

Both a 3D and a compact (2.5-D) versions of the algo-
rithm were implemented. As a first test, phase constants of a
rectangular waveguide fulfilled with magnetized ferrite media
were calculated using exact formulae and compared in Table I,
with the results generated by Pereda’s FDTD code [4] and the
technique presented in this paper. Although a rough mesh was
used, both FDTD programs converged well to the exact results
with slightly better accuracy shown by the method presented
in this paper. It was observed that although such a rough
mesh resolution is usually sufficient for homogeneously filled
waveguides, to obtain a stable solution for more complicated
structures higher densities of order a/30 — a/100 are required.

In Table II, the phase constants of a fundamental mode in
a rectangular waveguide loaded with a slab of magnetized
ferrite (Fig. 2(a)), obtained using exact formulae and FTDT,
are compared. Again, the FDTD produced results compare
very well with the theoretical ones.

As a final test, a rectangular resonator comprising
a longitudinally magnetized ferrite rod of a circular
cross-section (Fig. 2(b)) was considered. In Table III,
the resonance frequencies computed using FDTD, Mode
Matching, and measured experimentally are shown. Both
numerical techniques produced results that are in a very good
agreement -‘with the experimental data.

IV. CONCLUSIONS

A more efficient ferrite FDTD algorithm was: introduced for
the analysis of structures involving magnetized ferrites. Time
synchronism ensuring second-order accuracy was achieved
by extrapolation rather than interpolation used by previous
authors. This simplified the resulting FDTD update formulae
and yielded higher computational efficiency. Both 3D and
compact (for the analysis of waveguides) algorithms were
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Fig. 2. Rectangular waveguides comprising magnetized ferrltes (a)
Slab-loaded guide. (b) Rod-loaded guide.

implemented. Numerical examples included computations of
simple structures for which exact formulae were known, and
complicated ones for which the FDTD results were compared
with data generated by mode matching technique and obtained
experimentally. The method was found numerically stable. It
should be pointed out, however, that rigorous study of stability
of the ferrite FDTD has not been carried out yet.
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