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FDTD Analysis of Magnetized

Ferrites: A More Efficient Algorithm
Michal Okoniewski, Member, IEEE, and Ewa Okoniewska

Abstract— A more efficient FDTD algorithm is introduced
for the analysis of structures involving magnetized ferrites. A
critical issue of time and space synchronism ensuring second

order accuracy is discussed, and a method to provide it based on
extrapolation rather than interpolation used by previous authors
is presented. Nnmerical examples validating the method are

given.

I. INTRODUCTION

R ECENTLY, the versatility of FDTD has been further

enhanced with the introduction of algorithms capable

of solving electromagnetic problems that involve magnetized

ferrites. Two distinct approaches have been reported.

In the first one, the relations describing fer-

rite~lectromagnetic field interactions derived in the

frequency domain—are exploited. Magnetic flux ~ is related

to a magnetic strength vector 1? via a frequency dependent

tensor of Polder ~. This relation, transformed to the time

domain by means of the convolution theorem, is introduced

into the Maxwell’s equation system. Subsequent discretization

yields the FDTD scheme. A successful implementation of

this concept was described in details by Kunz et al. in their

book [1], where issues of transforming convolutions into an

efficient recursive technique and decoupling of the difference

equations were also addressed.

The other approach goes back into the physics of ferrites.

Maxwell’s equations are supplemented with the Gilbert’s

equation of motion, which describes, in the time domain,

the interactions between magnetic strength and magnetization

vectors in magnetized ferrites. In the context of FDTD this

idea was first reported by [2], [3]. As in the convolution

approach, the discretization process is complicated by the

existence of magnetized ferrites, and care must be taken to

maintain second-order accuracy of central difference scheme.

A properly synchronized in space and in time ferrite FDTD

method was introduced by Pereda [4] and almost simultane-

ously in [5], [6]. Pereda and his co-workers later utilized the

Rotated Richtmyer scheme [7] in their FDTD method, which

allowed them to avoid spatial interpolation of vector ~, but at

the expense of interpolation of vector fi.

In this letter, a further enhancement to ferrite FDTD tech-

niques is introduced in which maintenance of the proper time

synchronism within the entire FDTD scheme is simplified.
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II. FORMULATION

In the magnetized, saturated ferrite media, the electro-

magnetic wave is governed by the following set of partial

differential equations:

VxE=-.:Ii

vxI?=;;15

–~(fi x II) = -&

(1)

(2)

(3)

wher~ T $ a gyromagnetic ratio, ~=:$s +rii, fiz~i +;. Vec-

tors Al., Hi denote saturation magnel izatio~ and static biasing

magnetic field, respectively, while ti~ and h are time varying

magnetization and ~agnetic streng+ti vec~ors, respectively.

AssumQg th~t Lfs >> iii and Hi >> h, and knowing that

@ = ~0 (H + M), the following PDIB system is obtained:

(6)

This system of equation needs to be discretized in order

to derive an FDTD algorithm. As in the standard Yee’s

method, central differencing is appll ed to obtain an explicit,

leap-frog scheme. Since the field components in the plane

perpendicular to the biasing magnetization are coupled, care

must be exercised in the discretization process in order to

maintain the second order accuracy of the central difference

scheme, i.e. a proper synchronization of the algorithm in space

and in time has to be ensured. This; issue will be addressed

in the next section.

A. Synchronization in Space

To illustrate the synchronization problem the left sides of

(4), (5) are discretized first:

&l _ gn–1

cd = ;{vx~}”-1’2
(7)

~n+l/2 _ ~n–1/2

At =-i{v’fi}n-{%~ ‘8)

where: n denotes the number of time steps elapsed since the

beginning of the simulation.

Provided all the components are available in the specified

moments of time, the above finite difference approximation
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introduces errors of order O[(At)2]. To meet the specified time

~onstraints, time derivative of iii has to be computed using

hm (for the sake of clarity, it is assumed for the rest of this

section that Hi = O and ~~ = ikf~ dv):

{}

d+”

%m =–-yiizt,x 6“ (9)

Unfortunately, ;n is not available. In [2], and also recently

in [8], this fact was ignored and it was simply assumed that

;n = ;n–1/2. This aUowed for a simple derivation of ferrite

algorithm, but assured o[At/2] accuracy only.

A more accurate solution is obtained if interpolation is used

to fulfill time criterion in (9). It can be observed, that though

in is not available, ~m-1/2 is already known, and ~n+l/2 is

about to be determined. Simple linear interpolation yields:

If this approximation is introduced into (8), a following pair

of equations is obtained:

hn+vz _ ~hn+w = h-w _ 4!& . {v x ~}n + ~hn–m
z z z

/Jo
z

(11)

hn+l/2 + sh;+l/a = h;–~[z + S2Z . {V x fi}n _ sh;–l/z
z

#’o
(12)

where: s = At+

Note, that these equations are coupled, therefore they need

to be solved for h~+l’2 and h~+l’2 prior to the derivation of

FDTD update formulae. Pereda, in [4], [7], successfully used

an approach very similar to the one described above.

The numerical overhead associated with the decoupling in

the formulation presented above can be avoided if extrapola-

tion rather than interpolation is used as follows:

which leads to the following approximation of the time deriva-

tive of %:

{}

d+”

Zm (
= –~ti. x 3~n–1/a _ ~n–3/2

)
(13)

Using this approximation, the following relations can be

derived:

~-+1[~ = @/2 _
z Q&. . {v x E}”

(
+ S sh:–1/2 _ hn-3/2z

)
(14)

h~+l/z = h.-l/a _ &;Z . {V x ~}”
z z

Po

(
+ S &J-1/2 – h:–3/2

)
(15)

Unlike (1 1), (12), the above equations are not coupled and

can readily be used to derive FDTD update formulae. Although

much simpler, they provide second-order accuracy in time.

If Hi # O is allowed, it is not possible to directly compute

h fields. Instead, magnetization has to be computed first, and
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Fig. 1. Interpolation and extrapolation schemes in a Yee mesh modified for
ferrite media.

then its time derivative must be used to update h fields in (8),

as shown below:

[
mn~l/2 = m;–~/2 + $7 Hi(3rn~-1/2 — m~–3’2)

z

– Ms(3h:–1/2 – h;–3/2 )] (16)

– iWa(3h:-112 – h:-3/2 )] (17)

hn+l/2 = hn-~/2 _ @~z . {V x ~}n
z z

flo

(

mn+l/2 _ inn-l/2—
z x

)
(18)

h71+l/z = hn-~/2 _ ~& . {V x E}n
z z

Vo

B. Space Synchronism

As it is the case with

second-order accuracy is

(- m~+112 – m~-1/2
)

(19)

time, space synchronism ensuring

not automatically provided by the

central differencing applied to the right hand s;deof(18),-(19).

This directly results from the coupling between magnetic fields

perpendicular to the biasing magnetization and the organi-

zation of the modified Yee cell. For instance, magnetization

component m., though required at the location of hZ, is

actually evaluated at the location of h. field component, due

to the localized (in space) nature of the equation of motion

(compare (16)). To alleviate this problem, interpolation is used

(see Fig. 1), in a similar manner as in [4]. For example, in the

case of 2D mesh of compact FDTD:

mxi(i~, iy) = ~ [mZ(iz – 1, iy) + mz(fk, ig)] (20)

where: standard FDTD notation is used to describe the loca-

tion of vectors in space, and subscript i denotes interpolated

values.

This interpolation scheme breaks down at the metal-ferrite

interface. Extrapolation can be used instead, yielding, for

instance iz=O:

ma~(O, iy) = 2mZ(0, iy) – mmi(l,’i~)) (21)

The interpolated values m.i should be used in (18), (19)

in place of my.
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TABLE I
PHASE CONSTANTSOFFUNDmNTAL MODE OFRECTANGULARWAvEGumE
FULFILLED WITH MAGNETIZED FERRITE. WAVEGUIDE 22.86 x 10. 16nun,

FEFWUTEM, =2000Gs, 17~=0.l*A4., er=9; MESH Ax=a/ 10

~[radfm] 83.27 151.5 200.9 254.3 300.3 361.3 398.7 468.3 501.2
F[GHz] 6.630 6.911 7.207 7.604 S.003 6.601 9.001 9.799 10.20

errors [%]
FDTD[4] -0.69 -0.62 -0.55 -0.49 +2.05 +2.04 +4.26 +4.04 +3.94
FDTD this -0.16 -1.85 -1.16 -0.42 +0.1.5 +0.36 +0.44 +0.69 +0.89

TABLE Ii
PHASECONSTANTSOFFUNDAMENTAL MODE OF RECTANGULARwAvEGumE

PRTIALLY FILLED Wrrn MagnetiZed FERRITE. WAvEGumE 22.86x 10. 16rmn,
(FERRITE SLAB ADJACENT TO THE LATERAL WALL OFTHE WAVEGUIDE)

WmTH a/3, JWS=2000GS, HZ=O.l*JW,, 6,=9; MESH Az=a/100

@[rad/m] -500 -300 -200 -100 0 100 200 300 500

exact FIGHzI 10.57 7.669 6.696 6,618 6.S28 7.376 8.188 9,128 11.32
FDTD &or +0.10 +0.39 +0.4S +0.6.5 +0.73 +0.26 -0.55 -0.49 -0.13

TABLE III
RESONANCEFREQUENCYOFA FUNDAMENTALMODEm A RECTANGULAR

RESONATORLOADEDWITH CYLINDRICALMAGNETIZEDROD.RESONATOR
22.86 x 10.16 x 28.85mm. FERRITERODS:FOR0=2 and 3mm —

c~=13, JW=1750GS, Hi=o for @=4mm — ef=13.5, jJ, =950, jjTi=O

Rod @ [mm] 2 3 4

MM[9] 8.134 7.895 7.453
FDTD 8.136 7.906 7.435
measured [91 8.118 7.851 7.442

III. NUMERICAL EXAMPLES

Both a 3D and a compact (2.5-D) versions of the algo-

rithm were implemented. As a first test, phase constants of a

rectangular waveguide fulfilled with magnetized ferrite media

were calculated using exact formulae and compared in Table I,

with the results generated by Pereda’s FDTD code [4] and the

technique presented in this paper. Although a rough mesh was

used, both FDTD programs converged well to the exact results

with slightly better accuracy shown by the method presented

in this paper. It was observed that although such a rough

mesh resolution is usually sufficient for homogeneously filled

waveguides, to obtain a stable solution for more complicated

structures higher densities of order a/30 – a/100 are required.

In Table II, the phase constants of a fundamental mode in

a rectangular waveguide loaded with a slab of magnetized

ferrite (Fig. 2(a)), obtained using exact formulae and FTDT,

are compared. Again, the FDTD produced results compare

very well with the theoretical ones.

As a final test, a rectangular resonator comprising

a longitudinally magnetized ferrite rod of a circular

cross-section (Fig. 2(b)) was considered. In Table III,

the resonance frequencies computed using FDTD, Mode

Matching, and measured experimentally are shown. Both

numerical techniques produced results that are in a very good

agreement with the experimental data.

IV. CONCLUSIONS

A more efficient ferrite FDTD algorithm was introduced for
the analysis of structures involving magnetized ferrites. Time

synchronism ensuring second-order accuracy was achieved

by extrapolation rather than interpolation used by previous

authors. This simplified the resulting FDTD update formulae

and yielded higher computational efficiency. Both 3D and

compact (for the analysis of waveguides) algorithms were
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(a)

(b)

Fig. 2. Rectangular waveguides comprising magnetized ferrites. (a)
Slab-loaded guide. (b) Rod-loaded guide.

implemented. Numerical examples included computations of

simple structures for which exact formulae were known, and

complicated ones for which the FDTD results were compared

with data generated by mode matching technique and obtained

experimentally. The method was found numerically stable. It

should be pointed out, however, that rigorous study of stability

of the ferrite FDTD has not been carried out yet.
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